Selective inference: a conditional perspective

Xiaoying Tian Harris Joint work with Jonathan Taylor

August 22, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$

- Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- model = $Im(y \sim X1 + X2 + X3 + X4)$

- Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- ▶ model = Im(y ~ X1 + X2 + X3 + X4) model = Im(y ~ X1 + X2 + X4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$

• model =
$$Im(y \sim X1 + X2 + X3 + X4)$$

model = $Im(y \sim X1 + X2 + X4)$
model = $Im(y \sim X1 + X3 + X4)$

- ▶ Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- $\begin{tabular}{ll} \mbox{model} &= \mbox{Im}(y \sim X1 + X2 + X3 + X4) \\ \mbox{model} &= \mbox{Im}(y \sim X1 + X2 + X4) \\ \mbox{model} &= \mbox{Im}(y \sim X1 + X3 + X4) \\ \end{tabular} \end{tabular}$
- Inference after model selection
 - 1. Use data to select a set of variables E

2. Normal z-test to get p-values

- ▶ Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- $\begin{tabular}{ll} \mbox{model} &= \mbox{Im}(y \sim X1 + X2 + X3 + X4) \\ \mbox{model} &= \mbox{Im}(y \sim X1 + X2 + X4) \\ \mbox{model} &= \mbox{Im}(y \sim X1 + X3 + X4) \\ \end{tabular} \end{tabular}$
- Inference after model selection
 - 1. Use data to select a set of variables E
 - 2. Normal z-test to get p-values
- Problem: inflated significance
 - 1. Normal z-tests need adjustment
 - 2. Selection is biased towards "significance"

Inflated Significance

Setup:

- $X \in \mathbb{R}^{100 \times 200}$ has i.i.d normal entries • $y = X\beta + \epsilon, \ \epsilon \sim N(0, I)$ • $\beta = (\underbrace{5, \dots, 5}_{10}, 0, \dots, 0)$ • LASSO, nonzero coefficient set *E*
- ▶ z-test, null pvalues for $i \in E, i \notin \{1, ..., 10\}$

э

Post-selection inference

PoSI approach:

- 1. Reduce to simultaneous inference
- 2. Protects against any selection procedure
- 3. Conservative and computationally expensive

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Post-selection inference

PoSI approach:

- 1. Reduce to simultaneous inference
- 2. Protects against any selection procedure
- 3. Conservative and computationally expensive
- Selective inference approach:
 - 1. Conditional approach
 - 2. Specific to particular selection procedures

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3. More powerful tests

Conditional approach: example

Consider the selection for "big effects":

- $X_1,\ldots,X_n \stackrel{i.i.d}{\sim} N(0,1), \overline{X} = \frac{\sum_{i=1}^n X_i}{n}$
- Select for "big effects", $\overline{X} > 1$
- Observation: $\overline{X}_{obs} = 1.1$, with n = 5
- ▶ Normal *z*-test v.s. selective test for H_0 : $\mu = 0$.

Conditional approach: example

Consider the selection for "big effects":

- $X_1,\ldots,X_n \stackrel{i.i.d}{\sim} N(0,1), \ \overline{X} = \frac{\sum_{i=1}^n X_i}{n}$
- Select for "big effects", $\overline{X} > 1$
- Observation: $\overline{X}_{obs} = 1.1$, with n = 5
- Normal *z*-test v.s. selective test for $H_0: \mu = 0$.

Moral of selective inference

Conditional approach:

- Selection, e.g. $\overline{X} > 1$.
- Conditional distribution after selection, e.g. $N(\mu, \frac{1}{n})$, truncated at 1.
- Target of inference may (or may not) depend on the selection.
 - 1. Not dependent: e.g. $H_0: \mu = 0$.
 - 2. Dependent: e.g. two-sample problem, inference for variables selected by LASSO

Moral of selective inference

Conditional approach:

- Selection, e.g. $\overline{X} > 1$.
- Conditional distribution after selection, e.g. $N(\mu, \frac{1}{n})$, truncated at 1.
- Target of inference may (or may not) depend on the selection.
 - 1. Not dependent: e.g. $H_0: \mu = 0$.
 - 2. Dependent: e.g. two-sample problem, inference for variables selected by LASSO

Random hypothesis?

Replication studies

- Replication studies
- Data splitting: observe data (X, y), with X fixed, entries of y are independent (given X)

- Replication studies
- Data splitting: observe data (X, y), with X fixed, entries of y are independent (given X)

Random hypothesis selected by the data

- Replication studies
- Data splitting: observe data (X, y), with X fixed, entries of y are independent (given X)

Random hypothesis selected by the data

Data splitting as a conditional approach:

$$\mathcal{L}(y_2) = \mathcal{L}(y_2|H_0 \text{ selected by } y_1).$$

Selective inference: a conditional approach

Data splitting as a conditional approach:

$$\mathcal{L}(y_2) = \mathcal{L}(y_2|H_0 \text{ selected by } y_1).$$

Inference based on the conditional law:

$$\mathcal{L}(y|H_0 ext{ selected by } y^*), \qquad y^* = y^*(y,\omega),$$

where ω is some randomization independent of y.

Selective inference: a conditional approach

Data splitting as a conditional approach:

$$\mathcal{L}(y_2) = \mathcal{L}(y_2|H_0 \text{ selected by } y_1).$$

Inference based on the conditional law:

$$\mathcal{L}(y|H_0 ext{ selected by } y^*), \qquad y^* = y^*(y,\omega),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where ω is some randomization independent of y. Examples of v^* .

1.
$$y^* = y$$
, ω is void
2. $y^* = y_1$, where ω is a random split
3. $y^* = y + \omega$, where $\omega \sim N(0, \gamma^2)$, additive noise

Different y^*

	$y^* = y$	$y^* = y_1$	$\begin{vmatrix} y^* = y + \omega \end{vmatrix}$	randomized LASSO
у	Lee et al. (2013), Taylor et	Data splitting, Fithian et	T. & Taylor (2015)	T. & Tay- lor (2015)
	al.(2014)	al.(2014)		

<□ > < @ > < E > < E > E のQ @

Different y^*

	$y^* = y$	$y^* = y_1$	$\begin{vmatrix} y^* = y + \omega \end{vmatrix}$	randomized LASSO
У	Lee et al. (2013), Taylor et al.(2014)	Data splitting, Fithian et al.(2014)	T. & Taylor (2015)	T. & Tay- lor (2015)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Randomization transfers the properties of unselective distributions to selective counterparts.
- Much more powerful tests.

Selective v.s. unselective distributions

Example: $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} N(0,1), \overline{X} = \frac{\sum_{i=1}^n X_i}{n}, n = 5.$ Selection: $\overline{X} > 1.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Selective v.s. unselective distributions

Example: $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} N(0, 1)$, $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$, n = 5. Selection: $\overline{X} + \omega > 1$, where $\omega \sim \text{Laplace (0.15)}$ Explicit formulas for the densities of the selective distribution.

The selective distribution is much better behaved after randomization

Selective v.s. unselective distributions: weak convergence

Example:
$$X_1, \ldots, X_n \stackrel{i.i.d}{\sim}$$
 Laplace $\left(0, \frac{1}{\sqrt{2}}\right)$, $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$, $n = 100$.
Selection: $\overline{X} + \omega > 0.3$, $\omega \sim$ Laplace (0.03)

Selective v.s. unselective distributions: weak convergence

Example:
$$X_1, \ldots, X_n \stackrel{i.i.d}{\sim}$$
 Laplace $\left(0, \frac{1}{\sqrt{2}}\right)$, $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$, $n = 100$.
Selection: $\overline{X} + \omega > 0.3$, $\omega \sim$ Laplace (0.03)

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Selective central limit theorem

• Suppose
$$X_i \stackrel{i.i.d}{\sim} \mathbb{F}, X_i \in \mathbb{R}^k$$
.

- Linearizable statistics: $T = \frac{1}{n} \sum_{i=1}^{n} \xi_i(X_i) + o_p(n^{-\frac{1}{2}})$, with ξ_i being measurable to X_i 's.
- Suppose $\xi_i(X_i) \in \mathbb{R}^p$, with mean $\mu \in \mathbb{R}^p$ and variance $\Sigma \in \mathbb{R}^{p \times p}$.

Theorem (Selective CLT, T. and Taylor (2015))

If model selection is made with $T^* = T^*(T, \omega)$, where the selection satisfies some regularity conditions, then

 $\mathcal{L}(T \mid H_0 \text{ selected by } T^*) \Rightarrow \mathcal{L}(N(\mu, \Sigma) \mid H_0 \text{ selected by } T^*),$

if T has moment generating function in a neighbourhood of the origin.

Power comparison

HIVDB http://hivdb.stanford.edu/ Unrandomized $y^* = y$, randomized $y^* = y + \omega$, $\omega \sim N(0, 0.1\sigma^2)$.

▶ ▲ 臣 ▶ 臣 • • • • • •

Tradeoff between power and model selection

Setup
$$y = X\beta + \epsilon$$
, $n = 100$, $p = 200$, $\epsilon \sim N(0, I)$,
 $\beta = (\underbrace{7, \dots, 7}_{7}, 0, \dots, 0)$. X is equicorrelated with $\rho = 0.3$.

Use randomized y* to fit Lasso, active set E:

- 1. Data splitting / Data carving: $y^* = y_1$ random subset of y,
- 2. Additive randomization: $y^* = y + \omega$, $\omega \sim N(0, \gamma^2 I)$.

→ Ξ →

- 31

Data carving picture credit Fithian et al. (2014).

A general randomization approach

- Limitations of some randomization schems:
 - 1. Data splitting / Data carving: non-independent data structure.

- 2. Additive noise: discrete data
- Randomized convex program

Randomized convex program: an example

Randomized Lasso:

$$\hat{\beta}(\boldsymbol{y}, \boldsymbol{\omega}) = \min_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1} + \boldsymbol{\omega}^{T}\boldsymbol{\beta},$$

with λ fixed. A choice of λ , see Negahban et al. (2010). Choice of the distribution for ω ,

• $\omega \sim \text{Laplace}(\gamma)$, γ controls the amount of randomization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\blacktriangleright \ \omega = 0 \Rightarrow \mathsf{Lasso}$

Randomized convex program: an example

Randomized Lasso:

$$\hat{\beta}(\boldsymbol{y}, \boldsymbol{\omega}) = \min_{\boldsymbol{\beta} \in \mathbb{R}^{p}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{2}^{2} + \lambda \|\boldsymbol{\beta}\|_{1} + \boldsymbol{\omega}^{T}\boldsymbol{\beta},$$

with λ fixed. A choice of λ , see Negahban et al. (2010). Choice of the distribution for ω ,

• $\omega \sim \text{Laplace}(\gamma)$, γ controls the amount of randomization

•
$$\omega = 0 \Rightarrow Lasso$$

Advantages:

Can replace squared-error loss function with any loss.

Simplicity of sampling.

The conditional distribution to sample

Target of inference based on $\hat{\beta}(y, \omega)$,

 $\mathcal{L}(y \mid \hat{\beta}(y, \omega) \in A).$

- $A \subseteq \mathbb{R}^{p}$, where only coordinates in *E* can be nonzero.
- A can be the quadrant determined by the signs of β̂_{obs}, Lee et al. (2013) with ω = 0.

$$\hat{eta}(y,\omega)\in A\iff (y,\omega)\in B$$

The conditional distribution to sample

Target of inference based on $\hat{\beta}(y, \omega)$,

 $\mathcal{L}(y \mid \hat{\beta}(y, \omega) \in A).$

- $A \subseteq \mathbb{R}^{p}$, where only coordinates in *E* can be nonzero.
- A can be the quadrant determined by the signs of β̂_{obs}, Lee et al. (2013) with ω = 0.

$$\underbrace{\hat{\beta}(y,\omega) \in A}_{\text{simple}} \iff \underbrace{(y,\omega) \in B}_{\text{difficult}}$$

Change of variables

Summary:

The conditional law is

$$\mathcal{L}(y \mid \hat{eta}(y, \omega) \in \mathcal{A}) = \mathcal{L}(y \mid (y, \omega) \in \mathcal{B})$$

with B being a complicated set...

Map

$$(y,\omega)\mapsto (y,\hat{\beta}(y,\omega))$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Change of variables

Summary:

The conditional law is

$$\mathcal{L}(y \mid \hat{eta}(y,\omega) \in \mathcal{A}) = \mathcal{L}(y \mid (y,\omega) \in \mathcal{B})$$

with B being a complicated set...

Map

$$(y,\omega)\mapsto (y,\hat{\beta}(y,\omega))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Inverse true?

Change of variables: continued

- No! (y, ω) cannot be reconstructed from (y, β̂).
 Lasso is a mix of hard and softthresholding.
- Subgradient of l₁ penalty carries "information" about the inactive variables.

Equalities

$$-X^{T}(y-X\hat{\beta})+\hat{z}+\omega=0.$$

Simple case, when X = I,

$$\begin{cases} y_E - \hat{\beta}_E + \hat{z}_E + \omega_E &= 0\\ y_{-E} + \hat{z}_{-E} + \omega_{-E} &= 0 \end{cases}$$

Equalities

$$-X^{T}(y-X\hat{\beta})+\hat{z}+\omega=0.$$

Simple case, when X = I,

$$\begin{cases} y_E - \hat{\beta}_E + \hat{z}_E + \omega_E &= 0\\ y_{-E} + \hat{z}_{-E} + \omega_{-E} &= 0 \end{cases}$$

Inequalities:

$$\hat{z}_{E} \cdot \hat{\beta}_{E} > 0 \qquad |\hat{z}_{-E}| < \lambda$$

Equalities

$$-X^{T}(y-X\hat{\beta})+\hat{z}+\omega=0.$$

Simple case, when X = I,

$$\begin{cases} y_E - \hat{\beta}_E + \hat{z}_E + \omega_E &= 0\\ y_{-E} + \hat{z}_{-E} + \omega_{-E} &= 0 \end{cases}$$

Inequalities:

$$\hat{z}_{E} \cdot \hat{\beta}_{E} > 0 \qquad |\hat{z}_{-E}| < \lambda$$

Reconstruction Ψ:

$$\Psi: (y, \hat{\beta}, \hat{z}) \mapsto (y, X^{\mathsf{T}}(y - X\hat{\beta}) - \hat{z}) = (y, \omega)$$

Equalities

$$-X^{T}(y-X\hat{\beta})+\hat{z}+\omega=0.$$

Simple case, when X = I,

$$\begin{cases} y_E - \hat{\beta}_E + \hat{z}_E + \omega_E &= 0\\ y_{-E} + \hat{z}_{-E} + \omega_{-E} &= 0 \end{cases}$$

Inequalities:

$$\hat{z}_{E} \cdot \hat{\beta}_{E} > 0 \qquad |\hat{z}_{-E}| < \lambda$$

Reconstruction Ψ:

$$\Psi: (y, \hat{\beta}, \hat{z}) \mapsto (y, X^{\mathsf{T}}(y - X\hat{\beta}) - \hat{z}) = (y, \omega)$$

Conditional law

$$(y,\hat{\beta},\hat{z}) \mid \hat{z}_E \cdot \hat{\beta}_E > 0 \qquad |\hat{z}_{-E}| < \lambda$$

Summary

- Conditional approach
- Randomized selection procedure is more powerful
- Sampling the selective distribution (to be continued)

Reference: http://arxiv.org/abs/1507.06739

Summary

- Conditional approach
- Randomized selection procedure is more powerful
- Sampling the selective distribution (to be continued)
- Reference: http://arxiv.org/abs/1507.06739

Thank you!

Random hypothesis: revisited

In high dimensional statistics, the consistency of the estimators depends on the rate (Negahban et al. 2010),

$$\sigma \sqrt{\frac{\log p}{n}}$$

• Cross validation:
$$y^* = y_1 \in \mathbb{R}^{n_1}$$
,

 $n \rightarrow n_1$

• Additive randomization: $y^* = y + \omega$, $\sigma^* = \sqrt{1 + \gamma}\sigma$

Fithian, W., Sun, D. & Taylor, J. (2014), 'Optimal inference after model selection', arXiv:1410.2597 [math, stat] . arXiv: 1410.2597.

URL: *http://arxiv.org/abs/1410.2597*

- Lee, J. D., Sun, D. L., Sun, Y. & Taylor, J. E. (2013), 'Exact post-selection inference with the lasso', *arXiv preprint arXiv:1311.6238*.
- Negahban, S., Ravikumar, P., Wainwright, M. J. & Yu, B. (2010),
 'A unified framework for high-dimensional analysis of
 \$m\$-estimators with decomposable regularizers',
 arXiv:1010.2731.
 URL: http://arxiv.org/abs/1010.2731