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» model = Im(y ~ X1 + X2 + X3 + X4)
model = Im(y ~ X1 4+ X2 + X4)
model = Im(y ~ X1 + X3 + X4)

» Inference after model selection

1. Use data to select a set of variables E
2. Normal z-test to get p-values

» Problem: inflated significance

1. Normal z-tests need adjustment
2. Selection is biased towards “significance”



Inflated Significance
Setup:
» X € R100%x200 has i i.d normal entries
» y=XB+e€ e~ N(0,I)
» 5 =(5,...,5,0,...,0)
——

10
LASSO, nonzero coefficient set E
z-test, null pvalues for i € E, i ¢ {1,...,10}
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Post-selection inference

» PoSI approach:

1. Reduce to simultaneous inference

2. Protects against any selection procedure

3. Conservative and computationally expensive
» Selective inference approach:

1. Conditional approach

2. Specific to particular selection procedures

3. More powerful tests



Conditional approach: example

Consider the selection for “big effects”:

> X1, Xe 2T N(0,1), X = 22X

» Select for "big effects”, X > 1
» Observation: Xps = 1.1, with

n=>5

> Normal z-test v.s. selective test for Hy : u = 0.
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Conditional approach:

» Selection, e.g. X > 1.

» Conditional distribution after selection, e.g. N(u, 1),
truncated at 1.

» Target of inference may (or may not) depend on the selection.

1. Not dependent: e.g. Hy: = 0.
2. Dependent: e.g. two-sample problem, inference for variables
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Selective inference: a conditional approach

» Data splitting as a conditional approach:
L(y2) = L(y2|Ho selected by y1).

» Inference based on the conditional law:

L(y|Ho selected by y*),  y* = y*(y,w),

where w is some randomization independent of y.
» Examples of y*:
1. y* =y, wis void
2. y* = yy, where w is a random split
3. y* =y +w, where w ~ N(0,~?), additive noise



Different y*
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Different y*

*

y*=y yY'=wn y* =y 4w | randomized
LASSO
y | Lee et al. | Data T. & Taylor | T. & Tay-
(2013), splitting, | (2015) lor
Taylor et | Fithian et (2015)
al.(2014) | al.(2014)

» Randomization transfers the properties of unselective
distributions to selective counterparts.

» Much more powerful tests.
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Selective v.s. unselective distributions
Example: Xi,..., X, i N(0,1), X = % n=>5.
Selection: X 4+ w > 1, where w ~ Laplace (0.15)
Explicit formulas for the densities of the selective distribution.

original distribution X

conditional distribution after selection
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The selective distribution is much better behaved after
randomization




Selective v.s. unselective distributions: weak convergence

Example: Xi,..., X, i Laplace (O, %) X = Z’n:nl X n=100.

Selection: X + w > 0.3, w ~ Laplace(0.03)
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Example: Xi,..., X, i Laplace <0, %) X = @ n = 100.

Selection: X 4w > 0.3, w ~ Laplace(0.03)
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Selective central limit theorem

» Suppose X; i F, X; € R.

» Linearizable statistics: T = %Z,’-’Zl &i(X) + op(nfé), with &;
being measurable to X;'s.

» Suppose £;(X;) € RP, with mean p € RP and variance
Y € RP*P,

Theorem (Selective CLT, T. and Taylor (2015))

If model selection is made with T* = T*(T,w), where the
selection satisfies some regularity conditions, then

L(T | Hy selected by T*) = L(N(u,X) | Ho selected by T*),

if T has moment generating function in a neighbourhood of the
origin.



Power comparison

HIVDB http://hivdb.stanford.edu/
Unrandomized y* = y, randomized y* = y + w, w ~ N(0,0.102).

T Unrandomized

Parameter values
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Tradeoff between power and model selection

» Setup y = X + ¢, n=100,p = 200, € ~ N(0, /),
B=(7,...,7,0,...,0). X is equicorrelated with p = 0.3.
7
» Use randomized y* to fit Lasso, active set E:

1. Data splitting / Data carving: y* = y; random subset of y,
2. Additive randomization: y* =y +w, w ~ N(0,~2/).
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Data carving picture credit Fithian et al. (2014).



A general randomization approach

» Limitations of some randomization schems:

1. Data splitting / Data carving: non-independent data structure.
2. Additive noise: discrete data

» Randomized convex program



Randomized convex program: an example

Randomized Lasso:
Bly,w) = min |ly — XB[3 + A8l + w8,
BERP

with A fixed. A choice of )\, see Negahban et al. (2010).
Choice of the distribution for w,

» w ~ Laplace(7y), 7y controls the amount of randomization

» w=0= Lasso
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Randomized Lasso:
Bly,w) = min |ly — XB[3 + A8l + w8,
BERP

with A fixed. A choice of )\, see Negahban et al. (2010).
Choice of the distribution for w,

» w ~ Laplace(7y), 7y controls the amount of randomization
» w=0= Lasso

Advantages:
» Can replace squared-error loss function with any loss.

» Simplicity of sampling.



The conditional distribution to sample

Target of inference based on B(y,w),

L(y | By,w) € A).

» A C RP, where only coordinates in E can be nonzero.

» A can be the quadrant determined by the signs of Bobs: Lee
et al. (2013) with w = 0.
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The conditional distribution to sample

Target of inference based on 3(y,w),

L(y | Bly,w) € A).

» A C RP, where only coordinates in E can be nonzero.

» A can be the quadrant determined by the signs of Bobs, Lee
et al. (2013) with w = 0.

Bly,w) €A <= (y,w)€B
—_—— ~——

simple difficult



Change of variables

Summary:

» The conditional law is

L(y | Bly,w) € A) =L(y | (y.w) € B)

with B being a complicated set...
» Map
(y,w) = (v, B(y,w))



Change of variables

Summary:

» The conditional law is

L(y | Bly,w) € A) =L(y | (y.w) € B)

with B being a complicated set...
» Map
(y,w) = (v, B(y,w))

Inverse true?



Change of variables: continued

» No! (y,w) cannot be reconstructed from (y,ﬁ).
Lasso is a mix of hard and softthresholding.

» Subgradient of /1 penalty carries “information” about the
inactive variables.
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KKT condition and the subgradient

» Equalities
~XT(y = XB)+2+w=0.

Simple case, when X =/,
Ve —Be+2e+wg =0
y-etZ2egtwe =0

> Inequalities:
2e-Pe>0 |2_E|<)\

» Reconstruction V:

U (y,B3,2) = (v, XT(y — XB) — 2) = (v,w)

» Conditional law

(v.B.2) | 26-Be >0 |2_g| < A
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Sampling the selective distribution (to be continued)
Reference: http://arxiv.org/abs/1507.06739
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Thank you!



Random hypothesis: revisited

In high dimensional statistics, the consistency of the estimators
depends on the rate (Negahban et al. 2010),

log p
n

» Cross validation: y* = y; € R™,
n— n

» Additive randomization: y* =y 4w, ¢* = /1 +~o
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