
Selective inference: a conditional perspective

Xiaoying Tian Harris
Joint work with Jonathan Taylor

August 22, 2016



Model selection

I Observe data (y ,X ), X ∈ Rn×p, y ∈ Rn

I model = lm(y ∼ X1 + X2 + X3 + X4)
model = lm(y ∼ X1 + X2 + X4)
model = lm(y ∼ X1 + X3 + X4)

I Inference after model selection

1. Use data to select a set of variables E
2. Normal z-test to get p-values

I Problem: inflated significance

1. Normal z-tests need adjustment
2. Selection is biased towards “significance”
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Inflated Significance
Setup:

I X ∈ R100×200 has i.i.d normal entries
I y = Xβ + ε, ε ∼ N(0, I )
I β = (5, . . . , 5︸ ︷︷ ︸

10

, 0, . . . , 0)

I LASSO, nonzero coefficient set E
I z-test, null pvalues for i ∈ E , i 6∈ {1, . . . , 10}
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Post-selection inference

I PoSI approach:

1. Reduce to simultaneous inference
2. Protects against any selection procedure
3. Conservative and computationally expensive

I Selective inference approach:

1. Conditional approach
2. Specific to particular selection procedures
3. More powerful tests
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Conditional approach: example
Consider the selection for “big effects”:

I X1, . . . ,Xn
i .i .d∼ N(0, 1), X =

∑n
i=1 Xi

n
I Select for “big effects”, X > 1
I Observation: X obs = 1.1, with n = 5
I Normal z-test v.s. selective test for H0 : µ = 0.
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Moral of selective inference

Conditional approach:

I Selection, e.g. X > 1.

I Conditional distribution after selection, e.g. N(µ, 1
n ),

truncated at 1.
I Target of inference may (or may not) depend on the selection.

1. Not dependent: e.g. H0 : µ = 0.
2. Dependent: e.g. two-sample problem, inference for variables

selected by LASSO

I Random hypothesis?
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Random hypothesis

I Replication studies

I Data splitting: observe data (X , y), with X fixed, entries of y
are independent (given X )

Random hypothesis selected by the data

I Data splitting as a conditional approach:

L(y2) = L(y2|H0 selected by y1).
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Selective inference: a conditional approach

I Data splitting as a conditional approach:

L(y2) = L(y2|H0 selected by y1).

I Inference based on the conditional law:

L(y |H0 selected by y∗), y∗ = y∗(y , ω),

where ω is some randomization independent of y .

I Examples of y∗:

1. y∗ = y , ω is void
2. y∗ = y1, where ω is a random split
3. y∗ = y + ω, where ω ∼ N(0, γ2), additive noise
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Different y ∗

y∗ = y y∗ = y1 y∗ = y + ω randomized
LASSO

y Lee et al.
(2013),
Taylor et
al.(2014)

Data
splitting,
Fithian et
al.(2014)

T. & Taylor
(2015)

T. & Tay-
lor
(2015)

I Randomization transfers the properties of unselective
distributions to selective counterparts.

I Much more powerful tests.
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Selective v.s. unselective distributions

Example: X1, . . . ,Xn
i .i .d∼ N(0, 1), X =

∑n
i=1 Xi

n , n = 5.
Selection: X > 1.
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The selective distribution is much better behaved after
randomization



Selective v.s. unselective distributions
Example: X1, . . . ,Xn

i .i .d∼ N(0, 1), X =
∑n

i=1 Xi

n , n = 5.
Selection: X + ω > 1, where ω ∼ Laplace (0.15)
Explicit formulas for the densities of the selective distribution.
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Selective v.s. unselective distributions: weak convergence

Example: X1, . . . ,Xn
i .i .d∼ Laplace

(
0, 1√

2

)
, X =

∑n
i=1 Xi

n , n = 100.

Selection: X + ω > 0.3, ω ∼ Laplace(0.03)
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Selective central limit theorem

I Suppose Xi
i .i .d∼ F, Xi ∈ Rk .

I Linearizable statistics: T = 1
n

∑n
i=1 ξi (Xi ) + op(n−

1
2 ), with ξi

being measurable to Xi ’s.

I Suppose ξi (Xi ) ∈ Rp, with mean µ ∈ Rp and variance
Σ ∈ Rp×p.

Theorem (Selective CLT, T. and Taylor (2015))

If model selection is made with T ∗ = T ∗(T , ω), where the
selection satisfies some regularity conditions, then

L(T | H0 selected by T ∗)⇒ L(N(µ,Σ) | H0 selected by T ∗),

if T has moment generating function in a neighbourhood of the
origin.



Power comparison
HIVDB http://hivdb.stanford.edu/
Unrandomized y∗ = y , randomized y∗ = y + ω, ω ∼ N(0, 0.1σ2).
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Tradeoff between power and model selection

I Setup y = Xβ + ε, n = 100, p = 200, ε ∼ N(0, I ),
β = (7, . . . , 7︸ ︷︷ ︸

7

, 0, . . . , 0). X is equicorrelated with ρ = 0.3.

I Use randomized y∗ to fit Lasso, active set E :

1. Data splitting / Data carving: y∗ = y1 random subset of y ,
2. Additive randomization: y∗ = y + ω, ω ∼ N(0, γ2I ).

Data carving picture credit Fithian et al. (2014).



A general randomization approach

I Limitations of some randomization schems:

1. Data splitting / Data carving: non-independent data structure.
2. Additive noise: discrete data

I Randomized convex program



Randomized convex program: an example

Randomized Lasso:

β̂(y , ω) = min
β∈Rp

‖y − Xβ‖2
2 + λ‖β‖1 + ωTβ,

with λ fixed. A choice of λ, see Negahban et al. (2010).
Choice of the distribution for ω,

I ω ∼ Laplace(γ), γ controls the amount of randomization

I ω = 0⇒ Lasso

Advantages:

I Can replace squared-error loss function with any loss.

I Simplicity of sampling.
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The conditional distribution to sample

Target of inference based on β̂(y , ω),

L(y | β̂(y , ω) ∈ A).

I A ⊆ Rp, where only coordinates in E can be nonzero.

I A can be the quadrant determined by the signs of β̂obs , Lee
et al. (2013) with ω = 0.

β̂(y , ω) ∈ A ⇐⇒ (y , ω) ∈ B



The conditional distribution to sample

Target of inference based on β̂(y , ω),

L(y | β̂(y , ω) ∈ A).

I A ⊆ Rp, where only coordinates in E can be nonzero.

I A can be the quadrant determined by the signs of β̂obs , Lee
et al. (2013) with ω = 0.

β̂(y , ω) ∈ A︸ ︷︷ ︸
simple

⇐⇒ (y , ω) ∈ B︸ ︷︷ ︸
difficult



Change of variables

Summary:

I The conditional law is

L(y | β̂(y , ω) ∈ A) = L(y | (y , ω) ∈ B)

with B being a complicated set...

I Map
(y , ω) 7→ (y , β̂(y , ω))

Inverse true?
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Change of variables: continued

I No! (y , ω) cannot be reconstructed from (y , β̂).
Lasso is a mix of hard and softthresholding.

I Subgradient of `1 penalty carries “information” about the
inactive variables.



KKT condition and the subgradient
I Equalities

−XT (y − X β̂) + ẑ + ω = 0.

Simple case, when X = I ,{
yE − β̂E + ẑE + ωE = 0

y−E + ẑ−E + ω−E = 0

I Inequalities:
ẑE · β̂E > 0 |ẑ−E | < λ

I Reconstruction Ψ:

Ψ : (y , β̂, ẑ) 7→ (y ,XT (y − X β̂)− ẑ) = (y , ω)

I Conditional law

(y , β̂, ẑ) | ẑE · β̂E > 0 |ẑ−E | < λ
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Summary

I Conditional approach

I Randomized selection procedure is more powerful

I Sampling the selective distribution (to be continued)

I Reference: http://arxiv.org/abs/1507.06739

Thank you!
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Random hypothesis: revisited

In high dimensional statistics, the consistency of the estimators
depends on the rate (Negahban et al. 2010),

σ

√
log p

n

I Cross validation: y∗ = y1 ∈ Rn1 ,

n→ n1

I Additive randomization: y∗ = y + ω, σ∗ =
√

1 + γσ
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