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Model selection

I Observe data (y ,X ), X ∈ Rn×p, y ∈ Rn

I model = lm(y ∼ X1 + X2 + X3 + X4)
model = lm(y ∼ X1 + X2 + X4)
model = lm(y ∼ X1 + X3 + X4)

I Inference after model selection

1. Use data to select a set of variables E
2. Normal z-test to get p-values

I Problem: inflated significance

1. Normal z-tests need adjustment
2. Selection is biased towards “significance”
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Inflated Significance
Setup:

I X ∈ R100×200 has i.i.d normal entries
I y = Xβ + ε, ε ∼ N(0, I )
I β = (5, . . . , 5︸ ︷︷ ︸

10

, 0, . . . , 0)

I LASSO, nonzero coefficient set E
I z-test, null pvalues for i ∈ E , i 6∈ {1, . . . , 10}

0.0 0.1 0.2 0.3 0.4 0.5
p-values

0.0

0.1

0.2

0.3

0.4

0.5

fr
e
q
u
e
n
ci

e
s

null pvalues after selection



Post-selection inference

I PoSI approach:

1. Reduce to simultaneous inference
2. Protects against any selection procedure
3. Conservative and computationally expensive

I Selective inference approach:

1. Conditional approach
2. Specific to particular selection procedures
3. More powerful tests



Post-selection inference

I PoSI approach:

1. Reduce to simultaneous inference
2. Protects against any selection procedure
3. Conservative and computationally expensive

I Selective inference approach:

1. Conditional approach
2. Specific to particular selection procedures
3. More powerful tests



Conditional approach: example
Consider the selection for “big effects”:

I X1, . . . ,Xn
i .i .d∼ N(0, 1), X =

∑n
i=1 Xi

n
I Select for “big effects”, X > 1
I Observation: X obs = 1.1, with n = 5
I Normal z-test v.s. selective test for H0 : µ = 0.
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Moral of selective inference

Conditional approach:

I Selection, e.g. X > 1.

I Conditional distribution after selection, e.g. N(µ, 1n ),
truncated at 1.

I Target of inference may (or may not) depend on outcome of
the selection.

1. Not dependent: e.g. H0 : µ = 0.
2. Dependent: e.g. two-sample problem, inference for variables

selected by LASSO

I Random hypothesis?



Moral of selective inference

Conditional approach:

I Selection, e.g. X > 1.

I Conditional distribution after selection, e.g. N(µ, 1n ),
truncated at 1.

I Target of inference may (or may not) depend on outcome of
the selection.

1. Not dependent: e.g. H0 : µ = 0.
2. Dependent: e.g. two-sample problem, inference for variables

selected by LASSO

I Random hypothesis?



Random hypothesis

I Replication studies

I Data splitting: observe data (X , y), with X fixed, entries of y
are independent (given X )

Random hypothesis selected by the data

I Data splitting as a conditional approach:

L(y2) = L(y2|H0 selected by y1).



Random hypothesis

I Replication studies

I Data splitting: observe data (X , y), with X fixed, entries of y
are independent (given X )

Random hypothesis selected by the data

I Data splitting as a conditional approach:

L(y2) = L(y2|H0 selected by y1).



Random hypothesis

I Replication studies

I Data splitting: observe data (X , y), with X fixed, entries of y
are independent (given X )

Random hypothesis selected by the data

I Data splitting as a conditional approach:

L(y2) = L(y2|H0 selected by y1).



Random hypothesis

I Replication studies

I Data splitting: observe data (X , y), with X fixed, entries of y
are independent (given X )

Random hypothesis selected by the data

I Data splitting as a conditional approach:

L(y2) = L(y2|H0 selected by y1).



Selective inference: a conditional approach

I Data splitting as a conditional approach:

L(y2) = L(y2|H0 selected by y1).

I Inference based on the conditional law:

L(y |H0 selected by y∗), y∗ = y∗(y , ω),

where ω is some randomization independent of y .

I Examples of y∗:

1. y∗ = y1, where ω is a random split
2. y∗ = y , ω is void
3. y∗ = y + ω, where ω ∼ N(0, γ2), additive noise
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Different y ∗

I Much more powerful tests.

I Randomization transfers the properties of unselective
distributions to selective counterparts.

y∗ = y y∗ = y1 y∗ = y + ω randomized
LASSO

y Lee et al.
(2013),
Taylor et
al.(2014)

Data
splitting,
Fithian et
al.(2014)

T. & Taylor
(2015)

T. & Tay-
lor
(2015)



Selective v.s. unselective distributions

Example: X1, . . . ,Xn
i .i .d∼ N(0, 1), X =

∑n
i=1 Xi

n , n = 5.
Selection: X > 1.
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The selective distribution is much better behaved after
randomization



Selective v.s. unselective distributions
Example: X1, . . . ,Xn

i .i .d∼ N(0, 1), X =
∑n

i=1 Xi

n , n = 5.
Selection: X + ω > 1, where ω ∼ Laplace (0.15)
Explicit formulas for the densities of the selective distribution.
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Selective v.s. Unselective distributions

I Suppose Xi
i .i .d∼ F, Xi ∈ Rk .

I Linearizable statistics: T = 1
n

∑n
i=1 ξi (Xi ) + op(n−

1
2 ), with ξi

being measurable to Xi ’s.

I Central limit theorem:

T ⇒ N

(
µ,

Σ

n

)
,

where
E[T ] = µ ∈ Rp, Var(T ) = Σ.

Would this still hold under the selective distribution?
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Selective distributions

Randomized selection with T ∗ = T ∗(T , ω), M̂ : T ∗ 7→ M,

I Original distribution of T (with density f ):

f (t)

I Selective distribution:

f (t)`(t), `(t) ∝
∫

1
{
M̂ [T ∗(t + ω)] = M

}
g(ω) dω

where g is the density for ω.

I `(t) is also called the selective likelihood.



Selective central limit theorem

Theorem (Selective CLT, T. and Taylor (2015))

If

1. Model selection is made with T ∗ = T ∗(T , ω)

2. Selective likelihood `(t) satisfies some regularity conditions

3. T has moment generating function in a neighbourhood of the
origin

then

L(T | H0 selected by T ∗)⇒ L(N(µ,Σ) | H0 selected by T ∗),



Power comparison
HIVDB http://hivdb.stanford.edu/
Unrandomized y∗ = y , randomized y∗ = y + ω, ω ∼ N(0, 0.1σ2).
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Tradeoff between power and model selection

I Setup y = Xβ + ε, n = 100, p = 200, ε ∼ N(0, I ),
β = (7, . . . , 7︸ ︷︷ ︸

7

, 0, . . . , 0). X is equicorrelated with ρ = 0.3.

I Use randomized y∗ to fit Lasso, active set E :

1. Data splitting / Data carving: y∗ = y1 random subset of y ,
2. Additive randomization: y∗ = y + ω, ω ∼ N(0, γ2I ).

Data carving picture credit Fithian et al. (2014).
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