Selective inference: a conditional perspective

Xiaoying Tian Harris Joint work with Jonathan Taylor

September 26, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$

- Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- model = $Im(y \sim X1 + X2 + X3 + X4)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- ▶ model = Im(y ~ X1 + X2 + X3 + X4) model = Im(y ~ X1 + X2 + X4)

• Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$

• model =
$$Im(y \sim X1 + X2 + X3 + X4)$$

model = $Im(y \sim X1 + X2 + X4)$
model = $Im(y \sim X1 + X3 + X4)$

- ▶ Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- model = $Im(y \sim X1 + X2 + X3 + X4)$ model = $Im(y \sim X1 + X2 + X4)$ model = $Im(y \sim X1 + X3 + X4)$
- Inference after model selection
 - 1. Use data to select a set of variables E

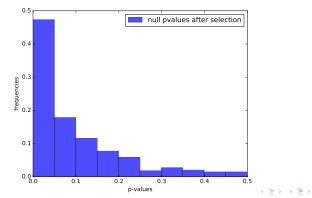
2. Normal z-test to get p-values

- ▶ Observe data (y, X), $X \in \mathbb{R}^{n \times p}$, $y \in \mathbb{R}^n$
- Inference after model selection
 - 1. Use data to select a set of variables E
 - 2. Normal z-test to get p-values
- Problem: inflated significance
 - 1. Normal z-tests need adjustment
 - 2. Selection is biased towards "significance"

Inflated Significance

Setup:

- $X \in \mathbb{R}^{100 \times 200}$ has i.i.d normal entries • $y = X\beta + \epsilon, \ \epsilon \sim N(0, I)$ • $\beta = (\underbrace{5, \dots, 5}_{10}, 0, \dots, 0)$ • LASSO, nonzero coefficient set *E*
- ▶ z-test, null pvalues for $i \in E, i \notin \{1, ..., 10\}$



э

Post-selection inference

PoSI approach:

- 1. Reduce to simultaneous inference
- 2. Protects against any selection procedure
- 3. Conservative and computationally expensive

Post-selection inference

PoSI approach:

- 1. Reduce to simultaneous inference
- 2. Protects against any selection procedure
- 3. Conservative and computationally expensive
- Selective inference approach:
 - 1. Conditional approach
 - 2. Specific to particular selection procedures

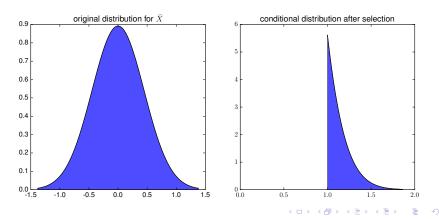
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3. More powerful tests

Conditional approach: example

Consider the selection for "big effects":

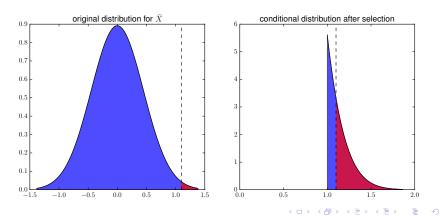
- $X_1,\ldots,X_n \stackrel{i.i.d}{\sim} N(0,1), \overline{X} = \frac{\sum_{i=1}^n X_i}{n}$
- Select for "big effects", $\overline{X} > 1$
- Observation: $\overline{X}_{obs} = 1.1$, with n = 5
- ▶ Normal *z*-test v.s. selective test for H_0 : $\mu = 0$.



Conditional approach: example

Consider the selection for "big effects":

- $X_1,\ldots,X_n \stackrel{i.i.d}{\sim} N(0,1), \ \overline{X} = \frac{\sum_{i=1}^n X_i}{n}$
- Select for "big effects", $\overline{X} > 1$
- Observation: $\overline{X}_{obs} = 1.1$, with n = 5
- Normal *z*-test v.s. selective test for $H_0: \mu = 0$.



Moral of selective inference

Conditional approach:

- Selection, e.g. $\overline{X} > 1$.
- Conditional distribution after selection, e.g. $N(\mu, \frac{1}{n})$, truncated at 1.
- Target of inference may (or may not) depend on outcome of the selection.
 - 1. Not dependent: e.g. $H_0: \mu = 0$.
 - 2. Dependent: e.g. two-sample problem, inference for variables selected by LASSO

Moral of selective inference

Conditional approach:

- Selection, e.g. $\overline{X} > 1$.
- Conditional distribution after selection, e.g. $N(\mu, \frac{1}{n})$, truncated at 1.
- Target of inference may (or may not) depend on outcome of the selection.
 - 1. Not dependent: e.g. $H_0: \mu = 0$.
 - 2. Dependent: e.g. two-sample problem, inference for variables selected by LASSO

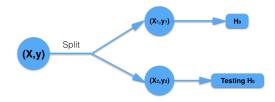
Random hypothesis?

Replication studies

- Replication studies
- Data splitting: observe data (X, y), with X fixed, entries of y are independent (given X)

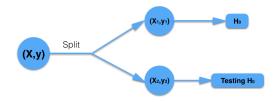


- Replication studies
- Data splitting: observe data (X, y), with X fixed, entries of y are independent (given X)



Random hypothesis selected by the data

- Replication studies
- Data splitting: observe data (X, y), with X fixed, entries of y are independent (given X)



Random hypothesis selected by the data

Data splitting as a conditional approach:

$$\mathcal{L}(y_2) = \mathcal{L}(y_2|H_0 \text{ selected by } y_1).$$

Selective inference: a conditional approach

Data splitting as a conditional approach:

$$\mathcal{L}(y_2) = \mathcal{L}(y_2|H_0 \text{ selected by } y_1).$$

Inference based on the conditional law:

$$\mathcal{L}(y|H_0 ext{ selected by } y^*), \qquad y^* = y^*(y,\omega),$$

where ω is some randomization independent of y.

Selective inference: a conditional approach

Data splitting as a conditional approach:

$$\mathcal{L}(y_2) = \mathcal{L}(y_2|H_0 \text{ selected by } y_1).$$

Inference based on the conditional law:

$$\mathcal{L}(y|H_0 ext{ selected by } y^*), \qquad y^* = y^*(y,\omega),$$

where ω is some randomization independent of y.
Examples of y*:

1.
$$y^* = y_1$$
, where ω is a random split
2. $y^* = y$, ω is void

3. $y^* = y + \omega$, where $\omega \sim N(0, \gamma^2)$, additive noise

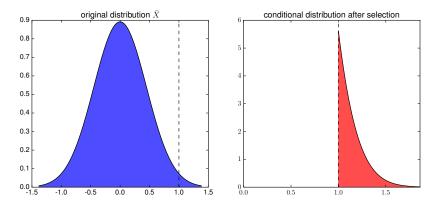
- Much more powerful tests.
- Randomization transfers the properties of unselective distributions to selective counterparts.

	$y^* = y$		$\begin{vmatrix} y^* = y + \omega \end{vmatrix}$	randomized LASSO
у	Lee et al. (2013), Taylor et al.(2014)	Data splitting, Fithian et al.(2014)	T. & Taylor (2015)	T. & Tay- lor (2015)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

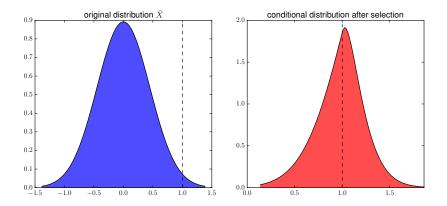
Selective v.s. unselective distributions

Example: $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} N(0,1), \overline{X} = \frac{\sum_{i=1}^n X_i}{n}, n = 5.$ Selection: $\overline{X} > 1$.



Selective v.s. unselective distributions

Example: $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} N(0, 1)$, $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$, n = 5. Selection: $\overline{X} + \omega > 1$, where $\omega \sim \text{Laplace (0.15)}$ Explicit formulas for the densities of the selective distribution.



The selective distribution is much better behaved after randomization

Selective v.s. Unselective distributions

• Suppose
$$X_i \overset{i.i.d}{\sim} \mathbb{F}, X_i \in \mathbb{R}^k$$
.

- Linearizable statistics: $T = \frac{1}{n} \sum_{i=1}^{n} \xi_i(X_i) + o_p(n^{-\frac{1}{2}})$, with ξ_i being measurable to X_i 's.
- Central limit theorem:

$$T \Rightarrow N\left(\mu, \frac{\Sigma}{n}\right),$$

where

$$\mathbb{E}[T] = \mu \in \mathbb{R}^{p}, \quad \operatorname{Var}(T) = \Sigma.$$

(日) (日) (日) (日) (日) (日) (日) (日)

Selective v.s. Unselective distributions

• Suppose
$$X_i \overset{i.i.d}{\sim} \mathbb{F}, X_i \in \mathbb{R}^k$$
.

- Linearizable statistics: $T = \frac{1}{n} \sum_{i=1}^{n} \xi_i(X_i) + o_p(n^{-\frac{1}{2}})$, with ξ_i being measurable to X_i 's.
- Central limit theorem:

$$T \Rightarrow N\left(\mu, \frac{\Sigma}{n}\right),$$

where

$$\mathbb{E}[T] = \mu \in \mathbb{R}^{p}, \quad \operatorname{Var}(T) = \Sigma.$$

Would this still hold under the selective distribution?

Selective distributions

Randomized selection with $T^* = T^*(T, \omega)$, $\hat{M} : T^* \mapsto M$,

Original distribution of T (with density f):

f(t)

Selective distribution:

$$f(t)\ell(t), \qquad \ell(t)\propto \int \mathbf{1}\left\{\hat{M}\left[T^*(t+\omega)
ight]=M
ight\}g(\omega)\;d\omega$$

where g is the density for ω .

• $\ell(t)$ is also called the selective likelihood.

Selective central limit theorem

Theorem (Selective CLT, T. and Taylor (2015)) *If*

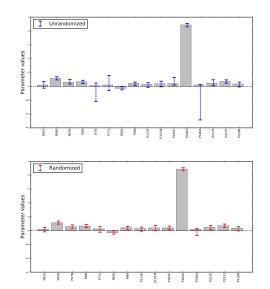
- 1. Model selection is made with $T^* = T^*(T, \omega)$
- 2. Selective likelihood $\ell(t)$ satisfies some regularity conditions
- 3. *T* has moment generating function in a neighbourhood of the origin

then

 $\mathcal{L}(T \mid H_0 \text{ selected by } T^*) \Rightarrow \mathcal{L}(N(\mu, \Sigma) \mid H_0 \text{ selected by } T^*),$

Power comparison

HIVDB http://hivdb.stanford.edu/ Unrandomized $y^* = y$, randomized $y^* = y + \omega$, $\omega \sim N(0, 0.1\sigma^2)$.



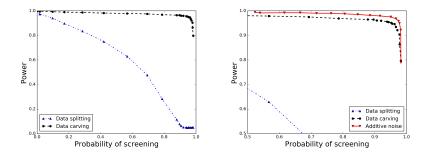
▶ ▲ 臣 ▶ 臣 ● のへの

Tradeoff between power and model selection

Setup
$$y = X\beta + \epsilon$$
, $n = 100$, $p = 200$, $\epsilon \sim N(0, I)$,
 $\beta = (\underbrace{7, \dots, 7}_{7}, 0, \dots, 0)$. X is equicorrelated with $\rho = 0.3$.

Use randomized y* to fit Lasso, active set E:

- 1. Data splitting / Data carving: $y^* = y_1$ random subset of y,
- 2. Additive randomization: $y^* = y + \omega$, $\omega \sim N(0, \gamma^2 I)$.



→ Ξ →

- 31

Data carving picture credit Fithian et al. (2014).

Fithian, W., Sun, D. & Taylor, J. (2014), 'Optimal inference after model selection', arXiv:1410.2597 [math, stat] . arXiv: 1410.2597.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

URL: http://arxiv.org/abs/1410.2597